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Abstract. This paper concerns the total internal reflection of an elastic wavefield at the
boundary between a compressible fluid and an adjacent elastic solid. The system is forced
by a prescribed high-frequency wave incident upon the interface from the fluid and emphasis
is placed on the construction of the local acoustic response near the points where the shear or
longitudinal components of the total elastic field propagate tangentially to the boundary.

A methodology for this construction, which is based on multiple-scales techniques, is
presented and detailed calculations are carried out for both flat and curved interfaces. These
analyses not only yield local amplitude balances and governing solutions but also furnish
certain diffraction coefficients which might be of importance in other global scattering problems
involving coupled fluid—solid configurations.

1. Introduction

In this paper, we give a detailed account of one very important aspect of the high-frequency
diffraction of a two-dimensional acoustic wave when incident upon a (possibly curved)
common interface between a compressible fluid and an elastic solid, namely total internal
reflection. To be more specific, we are interested in the wave structure local to the point
(or points) on the boundary where an incident ray, such as is emitted from a non-uniform
acoustic line source, meets the boundary and generates transmitted longitudinal and shear
rays such that one or other propagates (at least locally) parallel to the boundary.

To illustrate this in simple terms, consider the two-dimensional problem of an isotropic
acoustic line-source situated many wavelengths away from a flat fluid—solid interface.
Decomposing the radiation from the source into its constituent expansion fan of rays, a
typical incoming ray will partially reflect and partially transmit on impinging the boundary,
with the transmitted elastic ray field comprising both longitudi¢®) and sheaxS) rays.
Ignoring the relative amplitudes of the fields along these rays and assuming that the speed
of sound in the fluid is less than that of shear wave propagation in the solid, the angle of
ray transmission into the solid (measured from the normal pointing into the solid) increases
with the angle of incidence (again measured from the normal, this time into the fluid).
There are clearly two critical angles of inciden@g, and 65 (with 6, < 65), for which
the transmittedP- and S-rays, respectively, propagate parallel to (and therefore along) the
boundary. As the angle of incidence increases flagix = P, S), the a-type transmitted
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ray becomes complex and an associated evanescent field results (see Cahaht{4898)

for a discussion of this). However, the transmitted surface rays that are excited precisely
at the critical boundary points (henceforth referred to as points of total internal reflection)
continue to propagate along the boundary decaying according to an inverse three-halves
power law with propagated distance.

Of course, whilst we are guaranteed that the boundary conditions are satisfied at the
critical point itself, the critically transmitted surface ray generated at this point will not
satisfy them by itself at other more general points on the boundary and extra diffracted ray
fields must be introduced to account for this. One way of thinking about this is that the
mechanical interaction of each critically transmitted ray with the boundary induces further
plane waves irboth fluid and solid. These waves are called ‘head’ or ‘lateral’ waves
(Brekhovskikh and Godin 1992) and inherit the same algebraic decay law with distance as
the parent critical surface ray (which is sometimes referred to as a ‘surface skimming bulk
wave’ by researchers in non-destructive testing).

In this particular case, the wave speeds are such that the acoustic head waves—there are
two, one for each critically transmitted elastic ray—propagate without exponential decay
into the fluid. TheS-type elastic head wave induced in the solid by the critically transmitted
P-ray also propagates without exponential decay into the solid though-tigpe head wave
generated by the criticdll-type transmitted ray is evanescent.

One crucial feature to note is that none of these surface fields éxpmnentiallywith
distance in the direction of propagation along the boundary. Hence, once they are excited
they are capable of propagating for significant distances with measurable amplitudes. They
are therefore potentially very useful indeed in non-destructive testing evaluations, such as
those obtained by using the acoustic microscope (Briggs 1992, 1995).

The above description for head-wave propagation is mainly relevant to the case of a
two-dimensional, flat interface with obvious extensions to the three-dimensional case. If the
interface is curved, and for definiteness is taken to be concave on the elastic side, then the
so-called ‘whispering gallery’ modes are excited (Eadnd Buldyrev 1991, Ludwig 1975).
These can be thought of as ‘interior creeping fields’, where by the term ‘creeping field’
we mean the surface ray and associated diffracted field generated by exterior tangential ray
incidence upon a convex boundary (Keller and Lewis, 1995).

Be they flat or curved interfaces, general ray-type constructions for the critically
transmitted (i.e. totally internally reflected) surface rays and associated diffracted fields
exist (Keller and Lewis 1995) for simple boundary conditions, which permit extension to
other more general circumstances.

Whichever situation we consider, the ray solution alone will never give us a complete
theory since certain amplitude (or ‘diffraction’) coefficients will be missing. These are
governed by the excitation process in the neighbourhood of the critical point of total internal
reflection, where we know ray theory to be inapplicable. This difficulty is usually overcome
by posing an appropriate ‘canonical’ full wave problem (rather than a ray approximation to
one) in this neighbourhood, solving it and then matching its far field to the ray solution to
the actual problem that we are considering. As we shall note presently, such a canonical
problem might very well be the line-source problem referred to previously—this is amenable
to an exact integral Fourier transform solution and the head-wave contributions then arise
via branch point singularities of the integrand (Brekhovskikh and Godin 1992, Tew 1992a).
However, this solution cannot be used universally on all two-dimensional fluid—solid head-
wave calculations and the following remarks may help us to see why.
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Our first observation is that any canonical problem must take curvature effects into
account, either in the wavefronts of the incoming field (as in the analysis of Tew 1992a)
or else in the boundary. If not, then the issue is to consider critical plane-wave incidence
upon a flat fluid—solid boundary, the solution to which is easy to obtain (Brekhovskikh and
Godin 1990) but which has shortcomings as far as we are concerned.

For example, whichever elastic wave it is that is being totally internally reflected, it
will be a full, plane wave propagating parallel to the boundary in the solid. The associated
ray picture for this particular wave is then a family of straight lines running parallel to the
boundary and occupying the whole of the elastic half-space. Hence, in this formulation the
critically transmitted field at any point in the solid away from the boundary will be due to a
unique ray passing through that point whichwver intersects the boundaryhis ray cannot
then be identified as a ‘transmitted ray’ as such and so this solution can never match into
that for more realistic circumstances.

Given that we have now identified curvature as a necessary feature of the inner canonical
problem, we now assume that on the local inner scale the wavefront curvature either greatly
exceeds, or is significantly less than, the boundary curvature.

If we allow curvature in the wavefronts and take a planar boundary, then the appropriate
canonical problem is that of the isotropic line-source referred to previously. The argument
is that even if the actual source is non-uniform and produces a non-isotropic expansion
fan of incident rays, those rays that impinge the boundary near the point of total internal
reflection will come from a very narrow pencil of rays emitted from the source—so narrow
that there is no leading-order angular amplitude variation from one included ray to the next.
They therefore all appear to be identical as far as the inner diffraction problem is concerned
and so the source may as well be assumed to be uniform for these purposes.

The canonical diffraction problem for the situation with curvature in the boundary is
critical plane-wave incidence on an interface with a gradual modulation in curvature. Since
this will involve analysing thesource-freeHelmholtz equation in curvilinear coordinates,
there is no reasonable expectation that we should be able to recover the solution for this
case from that of the previous canonical case.

Indeed, the second situation does not admit an exact solution for arbitrary curvature and
so we must devise an asymptotic method to solve this inner diffraction problem from which
the diffraction coefficients required for the global scattering problem—which will not be
discussed in detail here though this analysis will form the basis of a subsequent paper—can
be read off.

We have developed such a methodology based on the multiple-scales analysis of a
related, but much simpler, problem (Tew and Ockendon 1992). It can also be applied to the
curved wavefront-flat boundary case and there is actually a significant advantage in doing so
rather than on relying on the far-field asymptotics of the exact integral transform solution that
is available in that case (Tew 1992a). This is because it gives the appropriate asymptotic
balances near the point of total internal reflection, and the corresponding solutions, in a
direct and natural way and this is information which is difficult (though not impossible) to
extract from the integral solution. At the very least, it gives us an opportunity to check our
results against those from the known exact solution before we apply it to the second case
where no other solution exists.

We now continue the main body of the paper with detailed analyses of the wave solution
local to points of total internal reflection, first when the wavefronts are curved and the
boundary is flat and then for flat wavefronts impinging a curved boundary.
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2. Total internal reflection-curved wavefronts, flat boundary

2.1. Formulation of the problem

In this case, the curvature of the wavefronts greatly exceeds that of the boundary in the
vicinity of the critical point and, as has been observed earlier, the source can then be taken
to be uniform.

We adopt a Cartesian coordinate system such that the undisturbed fluid—solid interface
lies alongy = 0 with the fluid occupying the half-spacge> 0 and the solidy < 0. If
the acoustic source is located at the pgiditiz) then the critical boundary points of total
internal reflection aréx,, 0) = (h cot,, 0), « = P, S, where the angle&, = cos(co/cy)
are as depicted in figure 1 and wheggis the acoustic wavespeed angdis the speed of
propagation of thex-type elastic wavécy < ¢s < cp).

Source

e

h critically incident ray
/

Fluid

X Solid

Figure 1. The scattering geometry and the critical angle of incidence.

To describe the wave structure, we universally suppress a time-harmonic fattor e
and introduce a velocity potential for the fluid and elastic displacement potentials for the
solid. More specifically, we express thetal fluid velocity potential as a superposition
of the Green function to account for the uniform source at the p@nk), the Green
function for the corresponding image source at the p@nt-#) and a ‘scattered’ potential
¢. This decomposition simplifies some of the boundary conditions and is done purely for
convenience. For the elastic displacements, we shall work with the scalar potgntald
x such that the displacement vector is givendy, y) = Vi (x, y) + V x (x(x, y)k).

In order to identify the correct inner problem, we must scale the dependent and
independent variables appropriately. Under the high-frequency assumption (which can be
interpreted as meaning, = w/c, (¢« =0, P, S) are all large), it is appropriate to scale

X =X + kg% y=ky'p 1%, 5] = O1) (2.1)
and

_ —ecpe™/? —ikoh\ ~ ~ .
(¢’ ‘(/f’ X) - ﬁkosin«% eXp( S|n9a )(‘Pm wotv X()l) (22)

The parametee in (2.2) is defined to bécopr)/(cpps), Where pg, ps are the densities
of the fluid and solid, respectively. We take care to note that whilst other aspects of the
global scattering problem, such as the launching of a leaky Rayleigh wave (Tew 1995),
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works on the assumption thatf ¢ « 1, this particular diffraction analysis does not need
to do so (though our theory here is trivial to adjustifs small). We choose to leave the
¢ dependence explicit so that cross-reference can easily be made to these other analyses, if
need be.
With these scalings, the boundary value problem to be solved is given by

(V2+1)p, =0 5>0 (2.3)
(V2 +coS6p)i, =0 $<0 (2.4)
(V2 +coSbs)3, =0 $ <0 (2.5)

with boundary conditions

PV %Re  9%a
J/[A — ——=0 (2.6)
x93y  0y2 9x2

3%y, 3%y, 92y 3%% iecocp - " i aa
2 o o 2 o 2 o __ ¢1/2 jx cosf,+id, X
-2 -2 . = 81/2¢ 2.7
P( 052 T 932 ) SRz T XShzap T T % (2.7)
(Ve 0%a\ 0
oo W _ ey | 3 (2.8)
ay ax ay

all to be evaluated off = 0. In addition, the solutions fap,, ¥, and %, must all exhibit
appropriate behaviour at infinity.

The first two of the boundary conditions guarantee continuity of surface traction across
the interface and the third represents continuity of normal component of velocity.

The forcing term on the right-hand side of (2.7) requires explanation; first, the parameter
84 is a small, dimensionless quality such that

sin° 6,
2koh

Second, the forcing term arises from the presence of the two Green function terms in the
total velocity potential. It turns out that in the neighbourhood being examined the arguments
of both terms are uniformly large and we are then justified in replacing these terms by their
leading-order asymptotic expansions. The scalings (2.1) then permit a further approximation
to the phase and amplitude of the forcing term and (2.7) is the upshot.

0< by =

<1 (2.9)

2.2. Multiple-scales analysis

Following the method of Tew and Ockendon (1992), we adopt a multiple-scales approach
using the two sets of slow variables

(X, Y) =87, and  (X,Y)=48/"@%, 9. (2.10)
We also assume expansions for the potentials in the form
b = 8222 + 634 h3 + 8upa + 8% s + - - (2.11)

where the expansions fak, and %, follow similarly. We deliberately start the expansion
at (9(801/ 2) since the coefficient functions, and ¢y, at O(1) and (9(801/ 4), respectively, are
identically zero. In this account, we shall considex= O(1). The corrections to account
for the cases « 1, as is relevant for light fluid loading but which is of no particular
significance here, are trivially done by stating in advance the relative sizesaoél s2'*
and inserting the-dependent terms at the correct order in the expansion.
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Analysis atO(8,'?). The O(8,*?) boundary value problem is to solve the appropriate
Helmholtz equation for each (szg, 1}2, X2 with boundary conditions

0%, | %R %R

- =0 2.12
00y 09y? 9x2 ( )
A 321/}2 32)?2 SiCOCp ~ a P
282 2 2 _ AfCOS,HX
cpVayy — 263—8)22 — 2c§ 5705 — ¢ =¢€* (2.13)
[0y 0% 3¢
o 202 2 92 (2.14)
ay ox ay

all on y = 0. Motivated by the boundary condition (2.13) we consider solutions in plane-
wave form. When theP-wave is generated tangential to the boundary @.e= P), it is
appropriate to seek solutions of the form

P2(X, Y1 %, 9) = AY) (X, ¥) f cosrrissingy >0  (215)

Ua(X,YV; X, Y; %) = BSP (X, ¥ X, ¥) fcosr $<0 (2.16)

R2(X. Y35, 9) = CP (X, y) @ cosriiCostsmcoden’™ 5 0 (2.17)
whilst those for whichS-wave is tangentialo( = S) are given by

Ga(X,Y: %, 9) = AD (X, Y) gf coss T sinds §>0  (218)

VX, Y: £, 3) = CS(X, ) g 00ss+7(cos b5—cos )2 $<0  (2.19)

$2(X,Y; X, Y; %) = B (X, ¥; X, ¥) €0 5 <0. (2.20)

Notice that we have placed an extra dependence on the overbarred variables on the fields
which are being totally internally reflected. As will become apparent, the structure of
these fields possesses a rapidly varying amplitude which necessarily depends on these extra
variables whereas the other amplitudes do not. We emphasize that we have deané?d by
the amplitude of the tangential field in both instances.

Substitution of the plane-wave forms (2.15)—(2.17) and, separately, (2.18)—(2.20) into
the boundary conditions (2.12)—(2.14) generates the ‘reduced boundary conditions’, given

by

o= P:
AP (X,00=0 (2.21)
(P) (v eiX2
B(X,0; X,0) = 2.22
2 ¢ )= 020, (22— ) (2.22)
cP(x,00=0 (2.23)
oa=3_S:
gx’
A9 (X,0) = i (2.24)
i cocp((c = B) /(¢ — 2)"* +ie)
_ 2i(c2 — c2)2aX"
B (X, 0 X, 0) = ————— (CZP 625)1 1 (2.25)
cpeg(L+ie(ch —c§) /(5 —cg) ")
gx’
c¥(X,0) = (2.26)

(L +ie(ch —c8) /(G — <))
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Analysis atO(834).  Given the results so far, the field equation derat this order is given
by

. . 92 92 .
(V2 +1)¢s + Z(axax 3y8Y>¢2 $>0 (2.27)

with equations fonﬁz and f(g foIIowing similarly. The associated boundary conditions are

329 aZA 825 825
29V ( ) 2 _ X 7% g (2.28)
0xady 8x8Y’ 399X 9y 8y8Y 0x 0x0X
%\ - 9213 9%V
AV2s + 2¢ —22—2 42 =
ARZ P(axax 35 ay)w S92 S9%9X
8243 92 92 P subcP A
—2c2 —2(;2( o — =0 2.29
59305 S\oagay = 999X & (2.29)
9 9 %3 0% by 9
a)< Vs | Mo i —Xz) 4%, _"’_2 - (2.30)
9y Yy  0x 93X 0y 9y

alony =Y =0.
In order to suppress secular growth in higher-order terms in the expansiots, for
and %, we must takeBy”’ = B (Y; X, Y) and

AP =R G =G (2.31)
where
e = X — COtO, Y (2.32)
tp = X + Y cosfp/(cog b5 — cos 6p)"? (2.33)
s = X —iY cosfs/(cos fs — cos Op )l/2 (2.34)
From (2.31), (2.21), (2.23), (2.24) and (2.26) we obtain
B mp) =G (p) =0 (2.35)
£ (ns) wer
ns) =
2 cocr((c§ = §)/ (3 = )" +ie)
N (2.36)
) gss
G, (&s) =

. 1/2 1/2
B+ie(ch — )/ -
leaving onIyBé") to be determined to close the leading-order solution. This requires us to
examine the problem fops, V73 and %3, the boundary conditions for which now follow as

. 3B, P .
0%y3  9%%3 0% —2icosfp —  grcosdr
— >~ w5 = ay (2.37)
0x0y ay ax
1/; 823 i 0
22, 3 _ 20 X3 | HlcoCr g 2.38
CP w3 S a 8 ® ¢3 ZICOCS 332 e'x coshg ( )
. . . 9B, .
9 9 9 —iw—s @toostr
of W _ s | 095 _ | less (2.39)
ay ax ay 0
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all on $ = Y = 0. The upper/lower forcing terms correspond to the tangemtidl-waves,
respectively.

Motivated by the forcing terms in these boundary conditions we also have plane-wave
solutions forgs, 3 and X3, given by (2.15)—(2.17) or (2.18)—(2.20) with the subscripts 2
replaced by 3. When substituted into the above boundary conditions, we obtain the ‘reduced
boundary data’

a = P:
2 P
0B _
AP X, 0= ——t T2 (7 =0 X,0) (2.40)
SIHGP(ZCS — cp) Y
N ico(4c3(c2 — 2)Y? + 4e/sindp) 9B, P -
BéP)(X,O; X.0) = — co(4e3(c5 CPZ 2(:5 / P)__z (F = 0. X.0) (2.41)
cp (ch - CP) oY
2icpc? 9BP) _
CP (X, 0 = ———FS T2 (7 —0,X,0) (2.42)
co(ZCS — CP) Y
a=3S:
2iwc 9B, _
45X, 0) = N 25 N 8—)-,2 Y =0, X,0) (2.43)
cp((c§—cf) "/ (ch —c5)"" +ie)
- 4cg(cd — ¢ 1/2 9B, _
B (X, 0, X,0) = _ 2( P g 152) - 22 (Y =0:X,0) (2.44)
cpeo(1+ie(ch —c§) "7/ (5 —cf) ") Y
2icg 9B, ®

cP(x,0) = (Y =0; X, 0). (2.45)

co(L+ie(c3 — 2) 2/ (c2 — 3) %) Y

Further information is obtained by now considering higher order terms in the expansions.

Analysis at?(s,) Substitution of the plane-wave forms fs, V2, 2, 3, ¥3 and %3 into
the governing equations &2(,) yields the field equation

Y 92 3%\~ 92 7 o\:
Vet 1)ps+ 2 =+ = + 12— +2— +V =0 2.46
( ) (aiax ayay)% < 959X | “a90Y >¢2 (2.46)
with similar equations following fory, and Xa.

For the tangential elastic fields we find that the usual appeal to secularity arguments
leads us to

: 9Bs@ 9B, @ 92B," _
2iCOSHy—  +2iC0Hy—2 +-=2 =0 Y <o. (2.47)
X X Y2
Since Bé"‘) is independent o, possible integration of (2.47) with respect Xodemands
we must set

. 9B, @  32B,® _
2i cosf, —2 272 _p Y <0 2.48
ax ' are = (2.48)

in order to avoid secular growth aBg” in X. In fact, this also implies thaB{” is
independent of.
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At this stage of the calculation it is helpful to isolate the boundary value problem for
BY(Y; X, Y) as follows:

9B, 92B," _

2icosf, — = =0 Y <0 (2.49)
X e
(P) éXZ
B (0; X, 0) = 2.50
2 )= o3 Op(2c2 — c2) (2:50)
2i(c2 — 2)Y2gx?
B (0; X,0) = — (¢ —<5) (2.51)

cpeg(1+ie(ch — Cs)l/z/(cs Co)l/z)
It is apparent that the problem f(B(")(Y; X, Y) is still not closed since we do not have
any information on hova("‘) depends orY. To rectify this, we must examine further the
boundary value problem &8 (s,) andO(s 5/4)

Substituting the plane-wave forms fqtrz, 1/[2, X2, ¢>3, 1/13 and x X3 into the boundary
conditions arising at)(3,) we obtain boundary conditions fqi, V74 and x4 with forcing
terms possessing the spatial factdr®’. This implies that the plane-wave forms f@s,
V4 and 34 are also of the form as those contained in (2.15)—(2.20) with the subscript 2 now
replaced by 4. Substituting these acoustic plane-wave forms into the governing acoustic
equation at?(57/*) and invoking secularity arguments, we obtain

ALY = F¥ (na) (2.52)
with 7, given by (2.32). It then follows from (2.40) that
2 9B (P) _
F{P(x) = “Cp 222 (¥ =0 x,0) (2.53)

sin6p(2c2 — 2) oY
and from (2.43) that

2iwcg 9B,
er((¢5—3) P /(ch —3) vie) OF
Thus, once we constru@y”’, we can close the leading-order solution everywhere as well

as the second-order solution in the fluid. To establish the form8f, we note that the
appropriate elastic field equations@(s;’*) yield

F$x) = (Y =0; X, 0). (2.54)

. B, @ 3Bs®  92Bs ™ _92B,®
2|c039a—_4 + 2|cosea—3 + = + 2_
0X 0X Y2 Yoy

Since bothBy” and By are independent of, equation (2.55) demands we set

=0 Y,Y<O. (2.55)

. B3 @  32Bs  52B,@ )
2iCoSHy— +——2 4222 _0 Y,Y <0 (2.56)
aX 972 aY oY

in order to avoid secular growth @\ with respect toX.

We are now able to determing"’ and we begin by defining the Fourier transform

[ee]

fY;€,7) =/ e X (Y X, Y)dX (2.57)

o0

with inverse

fY;X,Y) = % / N X (Y e, Y)de (2.58)
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for a general functionf. Applying the transform (2.57) to (2.49) gives us

928,
S _
5 2£cosh, By, =0 Y <0. (2.59)
Solving this using the outgoing wave/extinction conditiontas> —oo gives
BV E,Y) = b(E, V) eVEOHY Y <0 (2.60)
where we define the branch of the square root ¥y = +./Z for £ > 0 and&Y? = —i/[€]
for & < 0. Consideration of the Fourier transform of the equation (2.56) yields
=~ (@)
32Bs3 ~ ab _
- — 26 cosd, B = —2,/2¢ cosh, — eV oY 2.61
Y2 5 3 va Y (2.61)

whereupon, by secularity arguments, we must set
ab
—& Y)=0 2.62
7 &) (2.62)

which implies thatb = b(¢). ThereforeBY = B (Y, &) = b(g) eVZ %Y By taking
the Fourier transform of the boundary conditions (2.50) and (2.51) in turn we may calculate
b(&) and then use the inversion formula (2.58) to establish that

S . > . -
BY(Y,X) = E, f gXE+V2E CO T —iE?/A (i Y <0 (2.63)
where
gn/4 i(c2 — 2 1/2ei7'[/4
Er= 2 2 _¢2 Es=- 2 (-CP 2 %) 2\Y2, 2 Y2y
2/ cog bp(2c5 — c3) Vaepeg(1+ie(ch —c§) "/ (5 —c§) )
(2.64)
This finally allows us to calculat&,” from (2.53) and (2.54) in the forms
23/4 )02 g=37i/8 ) .
F{P(x) = @Cp 5 D1o(v/2 X ¥4 X2 (2.65)
sinfp co$/20p (2c3 — c3)
11/4 2 2\ /encd. a—3ri/8
2 2(2 2 /21 so(2 Y2, 20 2\1/2\2
cpeg(cs —cg) (L +ie(ch —c§) "/ (c§5 —cf) ")
(2.66)
where we have used the identity
/oo 51/2eixg—i52/4 de = 25/4ﬁe_5”i/88ixz/2D1/2(\/§ Xe371i/4) (2.67)
—00

to evaluate the solution in terms of the parabolic cylinder function of order oneqaifz).

2.3. The acoustic response

We are now in a position to use our results to state the acoustic response in the vicinity of
the point of total internal reflection of the-type elastic wave. In fact, if we use (2.2) to
reinstate the scaling prefactors, we obtain

¢~V 881/2eik0h/sin9u+i£cos@u-&-i)“sinﬂ,-k—ing
a“Fa
+Wa882/4eikoh/sin9d+i£ cos9u+i§~sin9a+i;;§/2Dl/2(ﬁ naesni/4) $>0
(2.68)
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where
vr=0 (2.69)
g3ri/4
o= sinesﬁ((C§ _ 63)1/2/(@% _ Cg)l/z n ig) (2.70)
Wp = | 248 2 oy
/7 sir? 6p cos/26p (22 — 3)
W 2142, /Cosh e371/8 o

crov((c — &) /(3 — ) ie)

Expanding this solution for largkg),| we obtain, using standard asymptotic expansions for
the parabolic cylinder functions,

1/2 fjkoh/ SiNf, +i% COSO, +iF SiNGy+in2
¢ ~ V, €6, e
3/4 dikoh/ SiNB,+ik cOSOy+iF Sing, +in? 1/2 i
+Ha85a el (|77a| + _16|7]a|3/2) Na < 0
(2.73)

while for n, > 0

. . a a P
¢ ~ Vasﬁul/ze'koh/sme‘f“x COSH, +iy sinbd, +ing

+i Ha£52/4ék°h/5m9"+'x COS9, +iP SiNby+in2 <ni/2 + 3/2>
16,

iHye 3/ gkoh/ sinfy +it cost, +iy siné,

37200 - (2.74)
Na
where
2 4 ~ri/4d
Hp — cp€ i (2.75)
V7 Sin? 0p c08/260p (22 — ¢2)
8¢2./cosd e7i/4
H = ‘s S . (2.76)

creov (& — @) /(3 — D) ie)?

The interpretation of these results is that (2.68) is the local acoustic response near the point
of total internal reflection and its asymptotic limit, given by (2.73) and (2.74), must match
into the outer ray field. The three terms common to (2.73) and (2.74) must match into the
specularly reflected field and the final term in (2.74) must match the acoustic head wave.

Independent ray calculations, details of which are presented in the appendix, confirm that
there is indeed a precise match between inner and outer reflected fields. If we introduce
a set of polar coordinategr, 6) based on the image source poi® —#), then another
independent ray calculation, also presented in the appendix, shows that the outer form of
the acoustic head wave induced by the total internal reflection af-type elastic wave is

eikoR cog6,—0)

(aH)
¢ 2 (koR sin(6, — 6))3/2

0 <6, (2.77)

where theQ, are unknown diffraction coefficients, the successful determination of which
is one of the principal aims of this calculation.



3078 Z M Rogoff ad R H Tew

Matching between (2.74) and (2.77) gives us that
B A edmi/a
V(27 sinfp cosdp)(2c2 — c%)z
2%2¢2 /( cosds sin’ f5)e>/4
2 Y2, 2 2\1/2 P2

Vrepeo(((e§ —e§) 7/ (ch — ¢§) ) +ie)
in precise agreement with the results of Tew (1992a). We have therefore succeeded in
describing the process of the total internal reflection of an elastic wave at a flat fluid—
solid boundary and have confirmed the accuracy of the results via comparison with an exact

analysis. This now gives confidence in the methodology and we apply it to the more general
case of a curved interface, for which no such exact solution exists.

Op (2.78)

Os = (2.79)

3. Total internal reflection—planar wavefronts, curved boundary

3.1. Formulation of the problem

Consider now a time-harmonic plane wave propagating through the fluid towards the solid
which now has a curved boundary. Without any loss of generality, we take the incoming
field to be¢™® = gko*—@r and we assume that the boundary appears convex from the fluid.

A
n(s |
|
|
|
|
|
|
|
|
|

incident field Fluid

P (s)

Solid

t(s)

S

Figure 2. The scattering geometry for a curved fluid—solid interface.

The geometry and definitions of some useful angles and coordinates are shown in
figure 2. In particular, we parametrize the boundary in terms of arc lengthich increases
in an anticlockwise sense) in the form

x = xo(s) y = yo(s) (3.1)
from which the unit tangent(s) follows ast(s) = xz(s) and the Senet—Frenet formulae

(Struik 1988) can be used to establish relationships betwesmd the unit normah(s) in
terms ofs and normal distance.
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It is no longer possible to simplify the full boundary value problem by subtracting out
direct and image source terms and so we proceed by isolating just the incident field. Doing
so means that the global problem is to solve three Helmholtz equations—akin to (2.3)—(2.5)
though with full wavenumbers reinstated and which must be considered in terms of the
boundary coordinate§, n)—subject to the forced boundary conditions

oy 2 %X _
2(‘“”%) —kx =25 =0 (3-2)

%y ax 9%y ikok2e P |kok e
— 2% 2— 2\ — = — 2 9"
( )W + + ( (s) as + onos + kpw ¢ kpw

—S- gl (3.3)

dgpret 9 3 o .
Z)n +iw a_erlwa_X iko Sing; (s) gkoro®) (3.4)

all to be evaluated on = 0. The parameter(s) in (3.2) is the boundary curvature and the
angled; (s) arising in (3.4) is as depicted in figure 2. In this formulation, we have written
the total acoustic potential ag"® + ¢'®" where the second term includes all diffraction
effects, as well as specular reflections. Analogous decompositions are taken for the elastic

potentials.

The incoming rays which will give rise to total internal reflection are those for which
cosb; (s) = co/cq (i.€.6;(s) = 0, = cos*(co/cy)) and we suppose that this occurs at s,.
The appropriate inner scalings are then

(s,n) = (s + ko5, ko 1) (@=P,S) (3.5)

which will lead to the normalized Holmholtz equations (2.3)—(2.5) which can further
approximated by

VS 25, (8 32 .

—+—=+1 : ——2i— |40 5, 1) =0 3.6
_<a§2+aﬁ2+ )Jrsmea(aﬁ 952 >+ (6 )]¢ S, 7) (3:6)
(3% 3% o 28, (@ 32 .

— 2 ‘= —-2a 0(s2 §,7) =0 3.7
_<a§2 a2 © c§,> * Sine, <aﬁ a§2> +O( “)]1/’(5’”) 3.7)
V& 28, (9 32

9 ‘% (L _2i 2 )+ 0(s2) | 5. 7)) =0 3.8
_<8§2+3ﬁ2+c§>+sin0a<aﬁ ”a§2)+ (“)}X(S ) (38)

with boundary conditions
28, oY 9% k2 3°%

o = 2 W OV Si-22%X~0 a=0 (3.9)
sing, ds  0nas ko? on?

(K- 2k2)w+22¢+2 25, 3% | 9% iek? el
ko? sin6, 95 9105 ) | kpkow

ekl iK0X0(50) —i8 COSHy +ide 52
kpkoa)el 2 s n=0 (3.10)

3 (Y 0% o ~ is i6,5
B_sz + |a)( E;Z v ) ~ (SiNBy, + 2 COth,8,5) gkovolsu)—is cosh,+idys? n=0. (3.11)

In this analysis the hats on the field variables denote that they are on an inner scéje and
is a small parameter given this time by
_ Kk(sg) SING,

= 1. 3.12
e < (3.12)
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The parametes, is taken to be small by virtue of the fact that the radius of curvature at
s, is much larger than any of the wavelengths in the problem. Whilst the combination of
derivatives on the right-hand side of (3.9)—(3.11) are different from those in the previous
case (cf equations (2.6)—(2.8)), there are similarities in that the forcing is of plane-wave type
modulated in phase by a slowly varying quadratic dependende tinis this that allows us

to use the methods developed in the previous section, which is precisely what we do next.

3.2. Multiple-scales analysis

Proceeding in an identical fashion to section 2, we consider a multiple-scales approach with
two sets of slow variables

(S, N) =8Y2(5, n) (S,N) = 8Y4s, h). (3.13)
The expansion for the acoustic potential is taken to be
qgref ¢ref+81/4 ref 51/2¢ref 83/4¢ref+5 ¢ref (3'14)

with those for the elastic potentials being similar. Notice that this time the expansions
begin atO(1)—this is because we did not subtract out image source-type terms, as we did
in section 2, and thes@(1) terms account for leading-order reflections.

Again, we keep to leading order, under exactly the same conditions as in the previous
section.

Analysis atO(1). Here the governing equations are given by

3% 92 ;
(W +—= Y. 5 T+ 1>¢re n>0 (3.15)
2 92 .
(@+w+coéep)¢0=o n<0 (3.16)
32 92
(ﬁ+@+co§es)xo=o i<0 (3.17)
with boundary conditions
o k2. 9%
S ge—2-22 -0 3.18
0705 k2" <o (3.18)
(kg - 2k129) ~ 321/}() 32)?0 |8k i8k2 i i ig2
_ 2 2 oref S ékoxo(sa)—lscos%-‘rlS 3.19
Wl 0T T s kpkoa)¢ kpkow (3.19)
~ ref ~ A
290 4020 102K _ jsing, ghovats)-iscos+is? (3.20)
on on 8s

all onn = 0. Whilst it has not been made explicit in the notatigia, and 3o represent the
leading-order elastic transmitted wavefields. In exactly the same way as before, we find

a = P:

>

¢ref(S’ N, §, ﬁ) — AE)P) (S, N) e—ifCOS@p-‘riflSiﬂ@p >0 (321)
Yo(S, N; S, N; §) = B (8, N; S, N) e ot <0 (3.22)
R0(S. N: 8, 7) = C(S, N) g iScosfrincodbs—coser)® 5 g (3.23)

=>
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for the tangentialP-field, and

a=S:
¢ref(S’ N, 5’ ﬁ) _ A(S)(S N) efiECOSOSvLi;lSinGs A>0 (324)
I/fo(S, N; §’ ﬁ) Cés)(S N) —i§ C0SO5+71(COF 5 —C0S Op) Y2 A<0 (325)
%0(S, N; S, N; §) = BSY(S, N; S, N) e71$¢0%s A<0  (3.26)

for the tangentialS-field. Notice that these wavefields propagate along the boundary in
the sense oflecreasings, explaining the minus sign in the-dependent exponent. The
associated boundary data is easily found to be

o= P:
Aép)(S, 0) = ghkovolsp)+is? (3.27)
B(()P)(S, 0.5,0) = L"l‘gékommﬂsz (3.28)
wkp (k§ — 2k3)
ciP(s.00=0 (3.29)
a=2S:

sinfs cosdp — ie( coF 05 — cos Gp)l/z

sinfs cosdp + ie( coF 05 — coL p)

4¢ tands( cog 05 — cos Op)l/ 2 gikoxo(ss) +is?
N 1/2

AP (8.0) = ghovoto s (3.30)

12

B (5,0;8,0) = (3.31)

@ sinds costp + ie(coF s — cOF Op)

2ie Sin@«gkoxo(ss)+is?
CéS)(S,O):—— S

(3.32)
@ sinfs cosdp + ie(coF b5 — coF 6p)

172"

Analysis atO(5%). We begin by substituting the leading-order plane-wave solutions just
derived into the governing equations(ﬁ(&%”) given by

3% 92 32 32

— +—+1 ref+2< ) ref — A>0 3.33

<3s2 an? ) 8§85 dNIN %o 55

with the other field equations being similar. Invoking secularity arguments we find we must
setdBy’ /88 =0, i.e. B = B’ (N; S, N). The boundary conditions &(s+'*) are given
by

82'&1 ( 82 82 )A k2 82)21 32)’60
2—— 42 — -2 -4 — =0 3.34
9705 son T a5 )Y T 12 T Y~ Yemon (3.34)
k2 2k2 2 2 3
_( )Ilfl 1/f1+4 wo e Axi
ko 3 OnoN onos
92 92 [
+2( 9 _ 40 ) ek 5 ¢fef (3.35)
dsON  0noS
~ ref ~ ref
0 0 .0 0 ax . ox
o 0o 0 0do 1+|wi_°=o (3.36)
on IN on IN s a5
allonn =0.

Using the results obtained so far, the problem fq?f, Y1 and %, is to solve the
appropriate Helmholtz equation—cross derivative terms in the lower-order terms like those



3082 Z M Rogoff ad R H Tew

in (3.33) being removed by secularity conditions (details to follow)—subject to the boundary
conditions

2 2 8BO(P) i coso
a Wl kS ~ a )21 2| COS@P—_ eﬁs P
-T2 = 3.37
anas kOZXl an2 oN (3.37)
n 0
kG —2k3) . 92 %X iek? .
_( s : P)I//1+2 1/f21 PLwe ek ref _ T (3.38)
ko on onds  kpkow 2i coshs = g8 cosls
~ ref ~ R aBO( )
0 0 9 —j e—lscosep
i e X _ TR (3.39)
on on as 0

where the upper/lower forcings correspond to thg tangemtigl-fields, respectively. This
leads us to the anticipated plane-wave formsﬁ’ﬁk Y1, x1 with boundary amplitudes given
by

o = P:
w COF B 9By "
sinfp(coffs —2cogp) N
i[4cog6p(cog s — co§9p)1/2 4 K C"5295] 3By

B{"(5,0;5,00 = — Kok sy | 0 Bo 0; 5,0 (3.41)
(cog s — 2cog 9p) oN

2icoshp 9By

A (5.0 = -

(©; S, 0) (3.40)

c!P(s,0) = =2 (©S,0 3.42
1 (5.0 cofs —2cod6p 9N ( ) (3.42)
a=3S.
2iw(cof b5 — co2p) "% cosdp / cosds 0By
AP(S,0 = — ( _ ) 77— (05,0 (3.43)
sinds costp + ie( coF s — cofhp) " IN
_ 4¢0s 0p Sinds/ co2 05)(cof s — cof 6p) % 9B,
B (8,0 8,0) = (4 cos Op sinés/ 5)( S 1/;) 20 0,5,00 (3.44)
sinds costp + ie(cog b5 — coF bp) oN
2i cosfp tand 9By
c¥(s,0) = P % (0;,0). (3.45)

sins cosdp + is( o 05 — cog )7 IN

Analysis atO(s2?). It is here that we observe the first difference in the calculation from
that performed in section 2 in that we now get field equations with non-constant coefficients.
The appropriate governing equation(a(aol/ 2) for the acoustic response is

(8_2+ 92 >¢ref < 92 9 >¢ref
052~ 9n? 8§BS nIN

92 92 92 92 AN 9
2 2 - ref _ A>0
+< 5595~ “anon T 952 T aNz  sing, a§2>¢ "=

(3.46)
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where the elastic equivalents are given similarly. Using the leading and second order
acoustic plane-wave solutions obtained so far, along with secularity arguments, we obtain

3A0™ dA0™

— tanf, — 2iN cotd, AY =0 i > 0. 3.47
39S oN T 0 "= (3.47)

This has solution
AL(S, N) = F () €V 0F b (3.48)

wheren, = S + N coté,. Similarly, Cé“) is found to be

iN2cog6
cP (s, Ny =GP (cp) exp| — ! P (3.49)
0 0 ®r sindp (cog b5 — co§0p)l/2
NZ2cog6
c¥(S,N) =GP (¢5) exp| — 5 (3.50)
0 0" sinds( cog b5 — cog 9,:)1/2

where {p = S — Ncosdp/(cos s — coszéhp)l/2 and {s = S + iN cosfs/(cos s —
co6,)"%. From (3.48) and (3.27), (3.29), (3.30) and (3.32) we obtain

Fé"‘) (1a) = Py gloxolsa)+ing (3.51)
where
sinds cosdp — ie(cof b5 — cofhp) ">
Pp=1  Pe=—2 T (cos o5 P)l/z (3.52)
sinds costp + ie(coF b5 — coF bp)
and
—2ie singsgkoros) e
G @) =0 G = — e T (3.53)
w(sinfs costp + ie(co s — coop) ")
For the tangential fields we find that secularity argumen@@é/z) imply
. 9B, @ [(92By 9Bo® AN co2, -
—2icosd, —=* 0 _icosy— +-——"2B*)=0,N.N <O0.
aS IN? aS sing,
(3.54)
SinceBé“)(N; S, N) is independent of, this in turn implies that we must set
2B, 9By 4N cof, _
0 _2icosly— +-—B® =0 N,N<O (3.55)
ON?Z N sing,
to avoid secular growth oB!”. We then observe that
B§Y(N: S, N) = e 2SNt g (g N) (3.56)
where
92 () . 98 @ _
—_ﬁ —2i cos@a—ﬂ =0 N <0 (3.57)
ON2 aS

the transform of which has the solution
B, N) = b(E)eZEO¥N N <0 (3.58)
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where 8@ is defined by (2.57). Boundary data ff (S, N) follows from (3.28) and
(3.31) as
2iekok?
ke (2 - 22)
4¢ tands( cog b5 — cog Qp)l/ Zgikoxo(ss) +i5?

BH(S.0)=—— . (3.60)
@ sings cosdp + ig(coF Os — coF Gp)l/2

ﬁ(P)(S, 0) = eikoxo(SP)-HSZ (3.59)

This allows us to we determing&), whereupon we obtain
B (N; SN) = E, glorot)=2isN cott, /Oo g 65 TV2ZCOBLEN -iE2/4 (i (3.61)
where the coefficients are given by
B ickok2e™/4
 omhp (k2 —2k2)
2¢ tands ( cos 05 — cod Qp)l/zé”/“

Es=— T (3.63)
wy/7 (Sinbs cosdp + ie(coF b5 — coF 6p) ")

Ep

(3.62)

This now closes the leading-order solution but not that for(ﬂ(éi/“) correction term, in
which the total internal reflection structure is embedded. For example, so far we know that
these terms in the acoustic response have the same phase structure as (3.21) and (3.24) but
the only thing we know about the amplitudes are their boundary values (3.40) and (3.43),
which are now known to us via the above solution Rjf’.

Further information is obtained by looking at tI@(SS/“) terms and the ubiquitous
secularity arguments generates amplitudes of the form (3.48) with 0 the subscript replaced
by 1. It then follows that

F9(ny) = Qqekorotatini/2p, 12(V/2 1,774 (3.64)

where

£27/4 cod 9sem/8
. S 2 (3.65)
cosfp( coZ0s — 2Cc0Z%0p
/cosdp (cog b5 — 2o 6p)
0 £2'%/ cosdp tands (cos b5 — cos §p) e/ (3.66)
§s== |
/075 (sinds coshp + ie (oS 05 — co ) %)

and Dy,»(z) is the usual parabolic cylinder function.

3.3. The acoustic response
The expansion for the acoustic potential is determined)(&y 2) to be
qgref -~ {Paéng + 8§/4Qaei”5/2D1/2(\/§ nae—in/4)}é'koxo(sa)+iN2 cot 6, —i§ cost, +in Sinf, (3.67)

We are interested in the expansioncfbﬁor large |n,|. Forn, > 0 the expansion is given
by
R . i . B . o
ref 1/4 —in/8¢1/4 1/2 koxo(Se)+in2-+iN? COP O, —i§ COSB, +ir SiNG,
10} {Pa—l—QaZ e 8, " my <1+—16n§>}xe'00
(3.68)
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and forn, < 0 by

2 ref 1/4 . 3i7/8¢1/4 1/2 i
~1{pP, G243 /8 L4 1+ ——
] { +0 o el ( + 16”5)}

« eiko)ro(sa)+ii’]§+iN2 COP O, —i§ COSO,+irt SiNb,

Q 83/483””8

ikox0(5q)—i§ COSA, +ifi SiN6,+iN2 col 6,
7 . (3.69)

+

An independent ray calculation (details of which are given in the appendix) verifies that
the terms common to (3.68) and (3.69) precisely match into the inner limit of the outer
specularly reflected field. The extra term in (3.69) is therefore the inner form ef-thipe
acoustic head wave and this will provide the diffraction coefficient associated with elastic
whispering gallery mode excitation and propagation at a fluid—solid interface. Details of
this very involved calculation will be the subject of a subsequent paper.

4. Discussion

We have now completely specified the full acoustic response at points of elastic wave total
internal reflection for the two separate cases of flat and curved fluid—solid interfaces. We
placed most emphasis on the wavefields excited in the fluid, though of course the analysis
that has been presented could be used to find that in the solid as well. Our justification
for this prioritization is that it is the acoustic field which is more likely to be used for
measurements in practical circumstances.

As has already been stated, these results now provide the launching coefficients for the
radiative acoustic head waves and whispering gallery modes which form part of the outer
scattered field. Not only that, but the derived inner diffraction structure considered here
also provides the matching conditions to specify the transition solution required in the outer
acoustic response to remove the singularity present in the far-field of the propagating head
waves along the direction of criticakflection i.e. along the direction of the specularly
reflected ray associated with the critically incident acoustic ray. For the flat boundary case,
this is manifested by theé = 6, singularity in (2.77) and a discussion of this case is offered
in an appendix to a paper by Tew (1992b) and is taken no further here.

The techniques used here to solve this total internal reflection problem appear to be very
robust and are amenable to some non-trivial extensions. One would be to consider more
general incoming fields and another would be to analyse other boundary conditions, such
as those at solid—solid interfaces.

In the former case, it might be possible to mimic beam incidence by locating the remote
source considered in section 2 at a complex point, as in the construction due to Deschamps
(1971). The expectation would then be that an analysis similar to that presented here would
have to take place aroundcamplexpoint of total internal reflection. This should present
no methodological difficulties, though of course the implications for the outer ray picture
must then be made in terms of complex ray fields (Chapetah 1998). A similar situation
would occur if the incoming field in section 3 were made evanescent (or inhomogeneous) by
prescribing a complex angle of incidence. Indeed, the Stokes line structure embedded within
the far-field asymptotics of the parabolic cylinder function describing the local acoustic fields
would then be responsible for determining the propagation regions of such complex head
waves and this in itself would be an interesting line of enquiry.

We have noted previously that the results of section 3 will be of use when looking
at ‘whispering gallery’ mode excitation and propagation at convex fluid—solid boundaries.
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This is currently under investigation for the cases of both open (i.e. infinite) and closed (i.e.
finite) elastic solids. The latter case is of particular interest since if we consider the solid as
an inclusion within an otherwise unbounded fluid, then in this high-frequency limit we can
examine the global total acoustic response at sufficiently large distances for the inclusion
to appear point-like. Under these circumstances, the incoming plane wave will dominate
almost everywhere and the leading-order scattered field will appear as if it were emitted
from a localized source, with a prescribed phase and an angular amplitude variation (or
directivity). There will be a very narrow ‘beam-like’ region in which this is not the case
and this region can be identified as the remains of the shadow zone at these large distances
from the scatterer. The field here contains information about the obstructing elastic inclusion
and it may well turn out to be the case that deductions about some of its material properties
may be inferred from suitable measurements of this remaining shadow zone.

Of course, this cannot happen for an open elastic body, where a well-defined shadow
zone persists at all distances. Even in this case, the likelihood is that acoustic head-wave
propagation into shadow will be a dominant and significant feature, and the ability to
construct its full structure using results similar to those presented here might be useful in
practical aspects of acoustic microscopy or more general non-destructive testing techniques.
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Appendix

In this appendix, we consider in more detail some of the asymptotic matching calculations
that are referred to in the main body of the paper. The results that we have presented so
far are for the ‘inner’ diffraction solutions close to the points of total internal reflection and
these solutions must match the ‘outer’ far-field solutions which we can calculate using ray
theory.

Though many accounts of ray theory exist—see Keller and Lewis (1995) or for the case
of coupled fluid—solid interactions, Tew (1992b), for example—we have chosen to include
a brief account of the principal results here for completeness. We then follow this by details
of the matching between certain components of the diffracted and the specularly reflected
fields, as well as the ray construction of the outer form of the head-wave radiation.

Appendix A.1. Review of ray theory

For the acoustic response—exactly similar arguments follow for the elastic case (Tew,
1992b)—the far-field solution can be determined by considering the limit of the full
Helmholtz equation

(V2+Kk)¢p=0  y>0 (A1)

asko — oo, subject to appropriate boundary conditions. This can be formalized by scaling
x = Lz, || = O(1), and requiring that the normalized wavenumbgr= koL, be large.
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We then assume that can be expressed in the form

An(x, )
~ glkon(E.9) A2
o~ Z (iko)" (A2)
identifying a phase (x, y) and an expansion for the amplitude in terms of reciprocal powers
of ko. Substitution of (A.2) into (A.1) and extracting like powers «f yields the eikonal
equation

Vu-Vu=1 (A.3)
and the transport equations

AoV +2VAy-Vu =0 (A.4)

AV2uU+2VA, - Vu+V>2?4A,_1=0 n=123.... (A.5)

The eikonal equation (A.3) can be solved parametrically in terms of arc-lengtbng the
associated characteristics (or ‘rays’) by noting that along these rays, defined by

dz

— = A.6

o =P (A.6)
wherez = (¥, y) andp = Vu, we see that the eikonal equation is equivalent to

du

— =1 A7

dz A1

Hence, ifu = ug(p) is given in terms of arc-length on the scattering boundafy= q(0),
then

u(p, ) = uo(p) + 7 (A.8)
now follows. Notice that we draw a distinction between arclength this calculation and
arclengths as used in the main body of the paper; this is because the ray coordipates
are not the same as the boundary coordin&tes), though it is true that on the boundary
(and only then), wherr = 0 = n, we have thap = s (in unscaled terms).

The definitionp = Vu and (A.7) now imply thatp is a constant vectomo(p) say,

along the rays and so (A.6) can now be integrated to give the ray equations in the form

Z(T, p) = po(P)T + Zo(P). (A.9)
Hence the ray directions are known onegp) has been calculated, and this can be done
by observing that

uo(p) = po(p) - (p) (A.10)
and

po(p) - po(p) =1 (A.11)

equation (A.11) simply being a restatement of (A.3).
Along these rays, the leading-order transport equation (A.4) becomes the first-order
ordinary differential equation

de_ + AoV?u =0 (A.12)

and a tedious calculation shows that the solution to this equation is

oG, B = Aot3, 0 { 90(0) %(5) = Po(h) Fo(p) }1/2
’ 1 290(B) po(B) = Po(B) 49(P)) + 40(5) To() — Po(P) 55(7)
(A.13)
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wherepo(p) = (po(p), qo(p)) and Ag(p, 0) is the amplitude on the scattering boundary
7 =0.

These results now completely specify the leading-order solution, since we have the
phaseu (A.8) and the amplitudeiy (A.13) along the known rays (A.9).

As an example of this, we construct, using ray methods, the expression given in (2.77)
for the acoustic head wave generated in the fluid by the total internal reflection @ftype
elastic wave in the solid.

In this case, the parametrization of the boundar: 0 can be expressed in the form
xo(p) = (p, 0). Also, the phase along the boundary of the totally internally reflected elastic
field is, fora = p, s, kux, Wherex, = k,L = wL/c,, then this must also be the boundary
evaluation of the phase of the associated acoustic field (which amounts to Snell's law
being satisfied, essentially). This can be used to show that in the notation of the previous
derivation,

wo(p) = 2 = COSup (A.14)
In this case, equations (A.10) and (A.11) now give that

o= po(d) (A.15)
and

1= pé(p) + q3(p) (A.16)

where we have again introduced the standard notaiigp) = (po(0), go(0)). In terms of
the angled, = cos(co/c,), we are able to solve (A.15) and (A.16) to give

Po(p) = COSH,y qo(p) = SiNb,. (A.17)
We are now in a position to state that the equations of the rays follow from (A.9) as

Z(T, p) = T(cos,, Sinby) + (o, 0) (A.18)
along which (A.8) provides the phase as

u(p, ) = pCOSly + 7. (A.19)

In fact, on taking components of (A.18), we are able to express (A.19) in terms ofx
and y, the result being

u = X Cost, + y sing,. (A.20)

To calculate the leading-order amplitude variation, we can either substitute the results we
have derived into (A.13) or we could go direct to (A.4), noting that (A.20) implies that
V2u = 0. Hence,V Ao - Vu = 0 and so, from (A.20) once more,

Ao(X, y) = f(x — y cotby) (A.21)

where f is a function which we must determine.

At this point, we need further input to the calculation from the structure of the totally
internally reflected elastic field. To be more precise, we need information about its amplitude
variation withx along the boundary, which for the line source case considered in section 2
is well known to be proportioned tox — 4 cotd,) %2 whereh = h/L (see Tew 1992a for
details). This implies thaf (&) o« (¢ —h cotd,)~%/2, otherwise the boundary conditions will
never be satisfied.
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If we piece together the information we have so far derived, the upshot is that the
leading-order ray ansatz now gives the acoustic head-wave radiation in the form
D,

[X — (3 + h) cot6,]3/2

where D, is the constant of proportionality that arises in the definitiory ofinverting the

scalings inx and y and introducing plane polar coordinates, ¢) centred on the image
source point0, —4) allows (A.22) to be recast into the form

¢(01H) ~ eixo()? €0SO,+y Sinb,)

(A.22)

QaeikOR cog6,—0)
(koR sin(9, — 0))3/2
for constantQ,,, which is identical to (2.77).

¢(aH) ~

Oy > 0 (A.23)

Appendix A.2. Matching between the ‘inner’ diffraction and ‘outer’ ray solutions

Our intention in this section is to provide further details of the asymptotic matching
calculations that were performed to connect the inner and outer solutions around the points
of total internal reflection. We shall do so for both the flat and curved boundary cases,
beginning with the former.

Flat boundary case

Our intention here is to present the analysis that confirms one of the statements that follow
equations (2.75) and (2.76). We begin by noting that if we work with the usual elastic
displacement potentialg and x and if we write thetotal acoustic potentiatb in the form

®(x, y) = —LiH" (koRo) — 2HS" (koR) + ¢ (x, y) (A.24)
where H\" is the usual Hankel function of the first kind and

Ro=Vx2+ (y — h)? and R =/x2+ (y + h)? (A.25)

are the distances of a poiiit, y) from the source and its image, respectively, then the
boundary value problem is given by

(V2 +ko?)p =0 y>0 (A.26)
(V2+k3)y =0 y<0 (A.27)
(V2 +k3)x =0 y<0 (A.28)

with boundary conditions (all to be evaluated pr= 0)

3%y %x 9%y

A ) A.29

dxdy + 9y2  9x? ( )
%y 3%y 9%y 9%y clwep cwcp

2= + — | — 22— — 22 =— HP (koR A.30
P( 9x2 8y2> 5952 “s 9xdy + co ¢ 2cg © (koR) ( )
. (0 ad d

iV _9x\ _ 9% (A.31)

dy ox dy

Since we take the source to be remote from the boundaxy ko), this justifies replacing
the Hankel function by its leading-order asymptotic expansion such that the boundary
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condition (A.30) becomes

%y %y %y 8%y glwcp gwcp 1 .
2 2 2 koR—im /4
) 22— 9 4 ~— ghoR—in/
CP( 0x2  0y? ) ‘s 9x2 ‘s 9xdy co ¢ co \ 2nkoR
(A.32)

ony = 0. To construct the specularly reflected field we soalgy) = L(;E, y) as in
section A.1, wheréyL > 1, and then the boundary value problem assumes the scaled form

(V2 +«8)¢ =0 5>0 (A.33)
(V2+k3)y =0 j<0 (A.34)
(V2+«d)x =0 y<0 (A.35)

23215 %y 9%x

X _ X _g 50 A.36
0597 | 952 ox2 Y (A-36)

o (%0 Y Zczﬂ _ o2 %X n SiKOZCP(l—) __Ko’cp gkoR—in/4 50
P\ 9x2 ' 9532 5 9x2 59x07 ko ko /2mkoR
(A.37)
(Y ax d¢
_,w(_lf _ _>_<> ¥ 50 (A.38)
ay ax ay
where
@ v, ) =& V. 1) (A.39)
ko = koL (and suitably forcp andxs) and R = LR. We consider the acoustic ray ansatz
n Al )(x y) ©
(X, §) ~ ) i) A.40
ey ,,;, (ixo)" (A.40)

with equivalent expansions fgr andv,. Substitution of the acoustic and elastic ray ansatz
into the boundary conditions (A.36)—(A.38) yields

ko @ (x, 0) = kpu? (x, 0) = ksu® (%, 0) = koR (%, 0) (A.41)

whereu” andu'® are the phases of the-type () and S-type (x) elastic ray fields,
respectively.
In the notation of the previous section, (A.41) yields the initial data

ul () = Z—Zé(ﬁ, 0) = Z—‘;,/ﬁz +i2  a=0,P,S (A.42)

which, in turn, generates

© - p O~ _ o
'2 h2
(@) Ca
o (0) = = — cosf a=P,S (A.44)
\/,0 +h2 co

and

2 1/2
(1——02‘co§9) 0> 0,
€

(:

95" (p) = (A.45)

RN

1/2
coso — 1) 0 <86,

onN
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follow, where as usuad, = cos(co/c,) andé can be identified as a polar angle centred
on the image source poii, —#). The choice of sign oq(()“) fora =0, P, S ensures the
radiation condition is satisfied. Wheh< 6,, « = P, S the transmitted elastie-rays are
complex which gives rise to exponential decay in the solid.

We may now present the equations for the reflected rays in the fluid in the form

X=7Tcosh + p y = tsind (A.46)
along which

u@p, 1) =7 ++/p2 + h2 (A.47)

In the terms of the cylindrical coordinaté®, #) centred on the image source, we can write

X = Rcosd y=RsSiNG —h (A.48)
and we can see, either geometrically or by direct calculation, that
w9, 3) = R, 3). (A.49)

To calculate the amplitude variation, it is easiest to put this expressian®oin terms of
R and6 into (A.4) direct to obtain

A A
2770, 20 9 (A.50)
oR R
which has the general solution
= F(0)
© -
Ay (R, 0) = IR (A.51)

To calculate the directivity functiorF(6), we can note that the leading-order boundary
conditions may be conveniently expressed in matrix form

P) _(P) 1— Zq(()S)Z

2py "4 (0
o -7 = Al
- P ()2 S e\ )
icpe 2¢2p $) (s (—) A
_ 1— 520 _zp(() )q(() ) o 0
Cow P 1/2
: (0) (P) () ) 4®
_1qq wqq _®Pg o 0
Cco cp Cs
o .
cp e—lrr/4 _
= | £ _ y=0 (A.52)
wCo 2T R
0
from which
eir[/4
F(6) = Yro (A.53)

 V2r{sing((2(c3/cR) cog 6 — 1) + (43 /cZep) oS Oypoyso) + evpo)

whereyqo = (1— (c2/c§) cos 9)1/2, a = P, S can be read off directly.
Therefore the leading-order solution is given by

¢~

éK0k+iﬂ/4yPO

V2rioR | sin6(5)((2(c3/c3) co20(p) — 1)° + (4¢3 /cBep) cOF 0(B)ypoyso) + eveo)
(A.54)
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To relate these results to those of section 2, we note that the ray structure of the head
wave (2.77) has been confirmed in section A.1. To finalize the calculation in section 2, we
therefore need to check that the outer form of the reflected field, which we can calculate by
adding to (A.54) the equivalent expressions representing the radiation from the actual and
image sources, matches the inner form as presented in equations (2.73) and (2.74).

To do this, we introduce the inner scalings into this outer analysis and calculate that

koh .
koR ~ sir:G + % cosf, + 3 sind, + n? (A.55)
VkoR ~ /21, (A.56)
; 1/4
1/2 |“/§|77a|1/25a
(9 - Qa) /2 ~ W (A57)

with n, given by (A.55), from which it follows that the limiting behaviour of the outer
reflected field as it approaches the inner diffraction region is

¢ref ~ £<Va81/2 + 1,_10t|’7o[|1/283/4+ ikoh/ SiNgy )i COSO, +i3 sinb, +in? (A.58)
o o )

e(
l6|77a|3/2>
in precise agreement with (2.73) and (2.74).

Curved boundary case

We now turn out attention to the ray and asymptotic matching calculations that confirm
equations (3.68) and (3.69) for the case of plane wave insonification of a convex fluid—solid
interface. In order to achieve this, we must first construct the leading-order ray solution for
the geometrically reflected field in the fluid.

We begin by subtracting the incident fiel#*efrom the total acoustic potentigl, leaving
the reflected fieldp™' to calculate. This results in the Helmholtz equations (A.26)—(A.28)
for the acoustic and elastic potential functions, though these must now be expregsed in
coordinates as in section 3, along with the boundary conditions (3.2)—(3.4).

We proceed by scaling the field equations and boundary conditions gsiny =
L(s,7) and apply a ray ansatz (A.2) fap'f, with similar expansions for the elastic
potential functions. If the eikonal phase functions associatedyitimd y arex™ andu®,
respectively, then the scaled versions of (3.2)—(3.4) immediately gives the eikonal boundary
conditions

wou(p, 0) = kpu™(p, 0) = ksu'¥(p, 0) = KoTo(p). (A.59)

Notice that we have switched fromto p, as we are entitled to do on the boundary (but
only there), in order to pose the problem in appropriate ray coordinates.
Equation (A.59) yields that

u(p, 0) = uo(p) = Xo(p). (A.60)
Furthermore, we can differentiate (A.60) to obtain the boundary condition
xo(p) = t(p) - Po(p) (A.61)

wheret(p) = x,(p) is the local tangent vector. Singg(p) = Vu, (A.61) implies that we
can write down the boundary derivatives/dp anddu/on onn = 0 in the form

L _cost(p) g—” = sinG, (5) (A.62)
n
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where#d; (p) is the angle of curvature of the boundary defined by
t(p) = (—cosb;(p), —sinb;(p)) (A.63)

and is depicted in figure 2. Notice that the first of the two expressions in (A.62) follows
directly from (A.61) whilst the second is obtained by substituting this result into the eikonal
equation (A.3).

An exactly similar procedure can be used to obtain the boundary derivative$ of
andu', and we need all of these functions because when we substitute the ray ansatz for
all the potential functions into the boundary conditions (3.2)—(3.4), the highest-order terms
correspond to differentiating the exponential pre-multipliers in the ray expansions and this
necessarily introduces these various boundary derivatives.

If we denote the leading-order amplitudes of the reflected acoustic, transmitted
longitudinal (P) and transmitted sheds) type waves ber’!, AJ” andAS”, respectively,
then the procedure just described leads to the boundary conditions

—2¢2 2¢2
0 > cosf;(P)yp  1— — COS6;(p)
cocr G Ag'(5.0)
i 2¢2 (P), =
=L Zicoga(5) —1 2= costi(pyys | Ao (-0
wCo Co co A(s)(_ 0)
o B o B o (0o,
ising; (p) —wyp @ COsY; (p)
cp
0
[
_ | _leer (A.64)
wCo
isind; (p)
where now
C2 1/2
Yo = (1 — % cos 9,-(5)) a=P,S. (A.65)
€

Though we could use (A.64) to calculate each of the three boundary amplitudes, we
concentrate here on the acoustic response, for which inversion of (A.64) yields
sin6; (9){ ((2c3/c3) co$ 6:(5) — 1)° + (4cd/cocr) COS 6,(B)ypys) — eve

sing; (p){((2c5/c§) co 6;(p) — 1)2 + (4c3/cocp) cOL0;(0)ypys} + evp
(A.66)

Aref(ﬁ’ o) —

To complete the determination of the reflected field, we must calculate the pleaskthe
ampIitudeA{)ef away from the boundary. In fact, the phaséollows straightforwardly from
our previous calculations as

u=Jo(p) + 7 (A-67)

and a simple calculation using (A.62) quickly demonstrates that the equations of the
specularly reflected rays are

X = Xo(p) + 7 COS B; (p) y =y(p) + Tsin&;(p) (A.68)
po(p) = cos F;(p) qo0(p) = sinD; (p). (A.69)
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If we now take these results and substitute them into (A.13) to find the amplitude, then

ref ~ -y _ 4ref = sino; (p) 12 jrko(¥o(p)+7)
(5. 7) = Al (p,0>(sin9i e (mf) d (A70)

where AF'(5, 0) is given by (A.66), results.

This concludes the construction of the geometrically reflected acoustic field well away
from the point of total internal reflection.

Returning to the inner diffraction analysis of section 3 in the main body of the paper,
we see that that analysis required the scalings in (3.5). If we introduce those scalings into
(A.70), making the necessary conversion frgm 7) to (§,n) coordinates, then we can
compute the limiting behaviour of (A.70) in these inner coordinates. When we do this, we
reproduce the terms representing the reflected field in (3.68) and (3.69) precisely, and the
matching procedure is complete.
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